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Outline of the talk

We discuss a generalization of mean ergodic theorems for single operators
to sets of operators.
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Notation

Let us fix some notations.

X - Banach space

H - Hilbert space

B(X ) - the space of all bounded linear operators on X

fix(T ) - the space of all fixed points of T

N(T ) - null space of T

R(T ) - range (space) of T

R(T ) - closure of R(T )
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Introduction

The Ergodenhypothese (ergodic hypothesis) was formulated around 1880
by Boltzmann, where he claimed that for an ideal gas, over time goes
through every physically feasible state. This used by Boltzmann to deduce
that independently of the initial state the average number of visits of a
region in the phase space is proportional to the volume of the region.
Rephrased and simplified this means time mean equals space mean.
However this was doubted to be true by Lord Kelvin and Poincare and
disproven by Plancherel and Rosenthal in 1913. Reformulation as quasi
ergodic hypothesis which means that the for almost every initial value this
property holds. This was finally be proven independently by von Neumann
(mean ergodic theorem) and by Birkhoff (pointwise ergodic theorem).

Proofs of which were published nearly simultaneously in PNAS in 1931 and
1932. These theorems were of great significance both in mathematics and
in statistical mechanics.
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Introduction

In statistical mechanics they provided a key insight into a 60-y-old
fundamental problem of the subject – namely, the rationale for the
hypothesis that time averages can be set equal to phase averages. The
evolution of this problem is traced from the origins of statistical mechanics
and Boltzman’s ergodic hypothesis to the Ehrenfests’ quasi-ergodic
hypothesis, and then to the ergodic theorems. These ergodic theorems
initiated a new field of mathematical-research called ergodic theory that
has thrived ever since. George D. Birkhoff and John von Neumann
published separate and virtually simultaneous path-breaking papers in
which the two authors proved slightly different versions of what came to
be known (as a result of these papers) as the ergodic theorem.
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Introduction

The techniques that they used were strikingly different, but they arrived at
very similar results. The ergodic theorem, when applied say to a
mechanical system such as one might meet in statistical mechanics or in
celestial mechanics, allows one to conclude remarkable results about the
average behavior of the system over long periods of time, provided that
the system is metrically transitive (a concept to be defined below). First of
all, these two papers provided a key insight into a 60-y-old fundamental
problem of statistical mechanics, namely the rationale for the hypothesis
that time averages can be set equal to phase averages, but also initiated a
new field of mathematical research called ergodic theory, which has thrived
for more than 80 y. Subsequent research in ergodic theory since 1932 has
further expanded the connection between the ergodic theorem and this
core hypothesis of statistical mechanics.
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Koopman Operator

We shall start with the von Neumann mean ergodic theorem using a little
bit operator theory.

Let (X , φ) be a measure-preserving system. Since φ : X → X is only
measure preserving and measurable it might be nonlinear, therefore we
want to associate a suitable linear operator T on the measurable functions
by

f 7→ Tf := f ◦ φ.
This operator T = Tφ is called the Koopman operator in the literature.
Clearly Tf is again a measurable function, it is linear and we can rewrite
f ◦ φn = T nf .

Note that the time mean of a function f : X → R under the first n ∈ N
iterates of T := (f 7−→ f ◦ φ) is given by

Anf =
1

n
(f + f ◦ φ+ · · ·+ f ◦ φn−1) =

1

n

n−1∑
j=0

T j f .
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Von Neumann’s theorem

Von Neumann’s theorem deals with these averages Anf for f from the
Hilbert space L2(X ).

Theorem 1 (Von Neumann).

Let (X , φ) be a measure-preserving system and consider the Koopman
operator T := Tφ. For each f ∈ L2(X ) the limt

lim
n→∞

Anf = lim
n→∞

1

n

n−1∑
j=0

T j f

exists in the L2-sense and is a fixed point of T .

We shall not discuss von Neumannn’s original proof, but we will prove the
von Neumann theorem in a more general form.
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Cesaro averages

For a linear operator T on a vector space X we let

An[T ] :=
1

n

n−1∑
j=0

T j (n ∈ N)

be the Cesaro averages of the first n iterates of T .

We denote by

fix(T ) := {f ∈ X : Tf = f } = N(I − T )

the fixed space of T .
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Lemma 2.

Let X be a Banach space, T ∈ B(X ) and An := An[T ]. Then

If f ∈ fix(T ), then Anf = f for all n ∈ N, and hence Anf → f ;

If Anf → g , then Tg = g and AnTf → g ;

[Hint : for n ∈ N, AnT = TAn = n+1
n An+1 − 1

n .]

If 1
n T nf → 0 for all f ∈ X , then Anf → 0 for all f ∈ R(I − T );

[Hint : for n ∈ N, (I − T )An = An(I − T ) = 1
n (I − T n)]

If Anf → g , then f − g ∈ R(I − T ).
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Lemma 3.

Let X be a Banach space and T ∈ B(X ). Then

F :=
{

f ∈ X : PT f := lim
n→∞

Anf exists
}

is a T -invariant subspace of X containing fix(T ). Moreover, PT : F → F
is a projection onto fix(T ) satisfying TPT = PT T = PT on F .

Proof.

The space F is clearly a subspace of X and PT : F → F is clearly
linear.

Let f ∈ F . We have limn→∞ Anf exists and PT f := limn→∞ Anf .
Then TPT f = PT f , and limn→∞ AnTf = PT f . Thus, PT Tf = PT f .
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Definition 4.

Let T ∈ B(X ). Consider the operator PT given by

PT f := lim
n→∞

1

n

n−1∑
j=0

T j f

on the space

F :=
{

f : lim
n→∞

Anf exists
}
. (1)

The operator PT is called the mean ergodic projection associated with
T . The operator T is called mean ergodic if F = E , i.e., the limit in (1)
exists for every f ∈ X .

Using this terminology we can rephrase von Neumann’s result : The
Koopman operator associated with a measure-preserving system (X , φ) is
mean ergodic when considered as an operator on E = L2(X ).
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Theorem 5.

Let T ∈ B(X ). Suppose that supn∈N ‖An‖ <∞ and that 1
n T nf → 0 for

all f ∈ E . Then the subspace

F :=
{

f : lim
n→∞

Anf exists
}

is closed, T -invariant, and decomposes into a direct sum of closed
subspaces

F = fix(T )⊕ R(I − T ) = N(I − T )⊕ R(I − T ).

The operator T |F ∈ B(F ) is mean ergodic. Furthermore, the operator

PT : F → fix(T ), PT f := lim
n→∞

Anf

is a bounded projection with N(PT ) = R(I − T ) and PT T = PT = TPT .
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Mean Ergodic Theorem on Hilbert Spaces

We shall see that the following result gives von Neumann’s theorem as a
corollary.

Theorem 6 (Theorem 8.6).

Let H be a Hilbert space and let T ∈ L(H) be a contraction (‖T‖ ≤ 1).
Then

PT f := lim
n→∞

1

n

n−1∑
j=0

T j f exists for every f ∈ H.

Moreover, H = fix(T )⊕ ran(I − T ) is an orthogonal decomposition, and
the mean ergodic projection PT is the orthogonal projection onto fix(T ).

The decomposition H = fix(T )⊕ ran(I − T ) is called the von Neumann
decomposition for contractions.
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Outline of the proof

Since ‖T‖ ≤ 1,
‖T n‖ ≤ ‖T‖n ≤ 1

and

‖An[T ]‖ =
∥∥∥ I + T + T 2 + · · ·+ T n−1

n

∥∥∥ ≤ 1,

so the powers T n and An[T ] are contractions, hence

supn∈N

∥∥∥An[T ]
∥∥∥ <∞.

Also ‖ 1n T n‖ ≤ 1
n → 0. So 1

n T nf → 0 for all f ∈ H.

Therefore, Theorem 8.5 can be applied and so the subspace F is closed
and PT : F → F is a projection onto fix(T ) with kernel ran(I − T ).

Note that F = fix(T )⊕ ran(I − T ).
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H = fix(T )⊕ ran(I − T )

Let f ∈ H with f ⊥ ran(I − T ).

Then 〈f , f − Tf 〉 = 0 and hence 〈f ,Tf 〉 = ‖f ‖2.

We have ‖Tf − f ‖2 = ‖Tf ‖2 − 2Re〈f ,Tf 〉+ ‖f ‖2 = ‖Tf ‖2 − ‖f ‖2 ≤ 0.

Since T is contraction and ‖Tf − f ‖2 = ‖Tf ‖2 −‖f ‖2 ≤ 0, ‖Tf − f ‖ = 0,
so f ∈ fix(T ). Thus ran(I − T )⊥ ⊆ fix(T ).

Since fix(T ) ∩ ran(I − T ) = {0}, we have

ran(I − T )⊥ = fix(T ).

Since PT is the projection onto fix(T ) and H = fix(T )⊕ ran(I − T ), PT

is the orthogonal projection onto fix(T ).

Alternatively, note that PT must be a contraction and use that a
contractive projection is orthogonal.
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Interesting Consequence

Corollary 7 (Corollary 8.7).

Let T be a contraction on a Hilbert space H. Then fix(T ) = fix(T ∗) and
PT = PT∗ .

Proof :

Let f ∈ fix(T ∗). Then 〈Tf , f 〉 = 〈f ,T ∗f 〉 = ‖f ‖2. We have
‖Tf − f ‖2 = ‖Tf ‖2 − 2Re〈f ,Tf 〉+ ‖f ‖2 = ‖Tf ‖2 − ‖f ‖2 ≤ 0. Since T is
contraction and ‖Tf − f ‖2 = ‖Tf ‖2 − ‖f ‖2 ≤ 0, ‖Tf − f ‖ = 0, so
f ∈ fix(T ). By symmetry, fix(T ) = fix(T ∗).

Since fix(T ) = fix(T ∗), PT and PT∗ are orthogonal projections onto the
same closed subspace of H, hence PT = PT∗ .

Alternatively, one may argue as follows. Since An[T ]→ PT strongly, i.e.,
pointwise on H, An[T ∗] = An[T ]∗ → P∗T = PT weakly. But T ∗ is a
contraction as well, hence An[T ∗]→ PT∗ strongly. Hence PT = PT∗ and
fix(T ) = fix(T ∗).
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Exercise

Exercise 8.

Let H = `2. Define T : `2 → `2 by

T (x1, x2, x3, . . .) = (x1, x2/2, x3/3, . . .).

Anwer the following :

Is T a bounded operator on H?

Is T a contraction?

Define T suitably on H so that fix(T ) = fix(T ∗) and PT = PT∗ .
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Exercise

Exercise 9.

Let H = L2([0, 1]). Define T : H → H by

T (x(t)) = x(1− t).

Is T a contraction?

P. Sam Johnson Contraction Semigroups on Hilbert Spaces 19/27



Operator semigroup

Let X be a Banach space and T ⊆ B(X ).

Definition 10.

T is called an (operator) semigroup if

T · T := {ST : S ,T ∈ T} ⊆ T.

A semigroup T is called mean ergodic if ∃P ∈ B(X ) :

(a) TP = PT = P∀T ∈ T and
(b) Pf ∈ conv{Tf } := conv{Tf : T ∈ T}∀f ∈ X .

We call P the corresponding mean ergodic projection.
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Observations

Since

TP = P ⇒ Pf ∈ fix(T) :=
⋂

T∈T
fix(T )

and

Pf ∈ conv{Tf } ⇒ P|fix(T) = identity,

therefore,

P(Pf ) = Pf ⇒ P2 = P.

Moreover, P is unique.
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Contraction semigroups on Hilbert spaces

Theorem 11.

Let T be a contraction semigroup on a Hilbert space H and P be a
projection onto fix (T). Then T is mean ergodic with associated projection
P. Also, Pf is the unique element of conv{Tf } with minimal norm.

Proof.
By definition, TP = P. Since fix(T ) = fix(T ∗). So, PT = P. As
conv{Tf } is non-empty, closed, and convex, ∃!g ∈ conv{Tf } with
minimal norm. Then Tg ∈ conv{Tf } and ‖Tg‖ ≤ ‖g‖. Thus
Tg = g ⇒ g ∈ fix(T).
Hence

g = Pg ∈ conv{PTf : T ∈ T} = {Pf }.
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Bounded mean ergodic semigroups

Theorem 12.

Let T be bounded (by c > 0) semigroup on E . The following are
equivalent :

(i) conv{Tf } ∩ fix(T) is a singleton for each f ∈ E .

(ii) T is mean ergodic.

(iii) conv{Tf } ∩ fix(T) 6= ∅ ∀f ∈ E and
conv w∗{T′f ′} ∩ fix(T′) 6= ∅ ∀f ′ ∈ E ′.

In this case, conv{Tf } ∩ fix(T) = {Pf } ∀f ∈ E .
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conv{Tf } ∩ fix(T) = {Pf } ⇒ T is mean ergodic

Let S ∈ T. Then Spf = Pf . Also

PSf ∈ conv{JSf } ∩ fix(T) ⊆ conv{Tf } ∩ fix(T) = {Pf }.

Note that, ‖Pf ‖ ≤ c‖f ‖ and P(λf ) = λPf . For f , g ∈ E and ε > 0,
∃ S ,R ∈ conv{T} with

‖Pf − Sf ‖ ≤ ε and ‖PSg − RSg‖ ≤ ε.

Then

‖(Pf + Pg)− RS(f + g)‖ ≤ ‖RPf − RSf ‖+ ‖Pg − RSg‖
= ‖RPf − RSf ‖+ ‖PSg − RSg‖
≤ (c + 1)ε.

So, Pf + Pg ∈ conv{T (f + g) : T ∈ T} ∩ fix(T) = {P(f + g)}.
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T is mean ergodic ⇒ conv{Tf } ∩ fix(T), convw∗{T′f ′} ∩ fix(T′) 6= ∅

Since Pf ∈ conv{Tf } ∩ fix(T), so the latter is non-empty.
Next,

T ′P ′ = (PT )′ = P ′∀T ∈ T⇒ P ′f ′ ∈ fix(T′).

Also, P ′f ′ ∈ conv w∗{T′f ′} (Hahn-Banach Separation theorem).
Thus

conv w∗{T′f ′} ∩ fix(T′) 6= ∅.

P. Sam Johnson Contraction Semigroups on Hilbert Spaces 25/27



conv{Tf } ∩ fix(T), convw∗{J′f ′} ∩ fix(T′) 6= ∅ ⇒ former is a singleton

Let u, v ∈ conv{Tf } ∩ fix(T) and

C := {f ′ ∈ E ′ : ‖f ′‖ ≤ 1, 〈u − v , f ′〉 = ‖u − v‖}.

Then C is convex, weak∗-closed, non-empty (Hahn-Banach), and
T′-invariant.
Hence

∅ 6= conv w∗{T′f ′} ∩ fix(T′) ⊆ C ∩ fix(T′).

Thus ∃f ′ ∈ C ∩ fix(T′) and so 〈f , f ′〉 = 〈Tf , f ′〉. Therefore
‖u − v‖ = 〈u − v , f ′〉 = 〈u, f ′〉 − 〈v , f ′) = 〈f , f ′〉 − 〈f , f ′〉 = 0.
This proves

u = v .
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